依依中文网 www.eezw.net,清史稿无错无删减全文免费阅读!
p; 最高日行十分秒之二又一九五八0三。
正交日行十分秒之一又一四六七二八。
本轮半径八十六万五千五百八十七。
均轮半径二十九万六千四百一十三。
次轮半径一百零四万二千六百。
本道与黄道交角二度三十一分。
土星平行应七宫二十三度十九分四十四秒五十五微。
最高应十一宫二十八度二十六分六秒五微。
正交应六宫二十一度二十分五十七秒二十四微。
木星用数
每日平行二百九十九秒,小馀二八五二九六八。
最高日行十分秒之一又五八四三三。
正交日行百分秒之三又七二三五五七。
本轮半径七十万五千三百二十。
均轮半径二十四万七千九百八十。
次轮半径一百九十二万九千四百八十。
本道与黄道交角一度十九分四十秒。
木星平行应八宫九度十三分十三秒十一微。
最高应九宫九度五十一分五十九秒二十七微。
正交应六宫七度二十一分四十九秒三十五微。
火星用数
每日平行一千八百八十六秒,小馀六七00三五八。
最高日行十分秒之一又八三四三九九。
正交日行十分秒之一又四四九七二三。
本轮半径一百四十八万四千。
均轮半径三十七万一千。
最小次轮半径六百三十万二千七百五十。
本天高卑大差二十五万八千五百。
太阳高卑大差二十三万五千。
本道与黄道交角一度五十分。
火星平行应二宫十三度三十九分五十二秒十五微。
最高应八宫初度三十三分十一秒五十四微。
正交应四宫十七度五十一分五十四秒七微,馀见日躔。
推土、木、火星法
求天正冬至,同日躔。
求三星平行,以积日详月离。与本星每日平行相乘,满周天秒数去之,馀收为宫度分,为积日平行。以加本星平行应,得本星年根。上考则减。又置本星每日平行,以所求距天正冬至次日数乘之,得数与年根相并,得本星平行。
求三星最高行,以积日与本星最高日行相乘,得数以加本星最高应,得最高年根。上考则减。又置本星最高日行,以所求距天正冬至次日数乘之,得数与年根相并,得本星最高行。
求三星正交行,以积日与本星正交日行相乘,得数以加本星正交应,得正交年根。上考则减。又置本星正交日行,以所求距天正冬至次日数乘之,得数与年根相并,得本星正交行。
求三星初实行,置本星平行,减最高行,得引数。用平三角形,以均轮半径减本轮半径为对正角之边,以引数为一角,求得对引数角之边及对又一角之边。又用平三角形,以对引数角之边与均轮通弦相加求通弦法,详月离。为小边,以对又一角之边与本天半径相加减引数三宫至八宫相减,九宫至二宫相加。为大边,正角在两边之中,求得对小边之角为初均数。并求得对正角之边为次轮心距地心线,以初均数加减本星平行,引数初宫至五宫减,六宫至十一宫加。得本星初实行。
求三星本道实行,置本日太阳实行减本星初实行,得次引。即距日度。用平三角形,以次轮心距地心线为一边,次轮半径为一边,惟火星次轮半径时时不同,求法详后。次引为所夹之外角,过半周者与全周相减,用其馀。求得对次轮半径之角为次均数,并求得对次引角之边为星距地心线。乃以次均数加减初实行,加减与初均相反。得本星本道实行。求火星次轮实半径,以火星本轮全径命为二千万为一率,本天高卑大差为二率,均轮心距最卑之正矢为三率,引数与半周相减,即均轮心距最卑度。求得四率为本天高卑差。又以太阳本轮全径命为二千万为一率,太阳高卑大差为二率,本日太阳引数之正矢为三率,引数过半周者与全周相减,用其馀。求得四率为太阳高卑差。乃置火星最小次轮半径,以两高卑差加之,得火星次轮实半径。
求三星黄道实行,置本星初实行,减本星正交行,得距交实行。次轮心距正交。乃以本天半径为一率,本道与黄道交角之馀弦为二率,距交实行之正切为三率,求得四率为正切。检表得黄道度,与距交实行相减,得升度差,以加减本道实行,距交实行不过象限及过二象限为减,过象限及过三象限为加。得本星黄道实行。
求三星视纬,以本天半径为一率,本道与黄道交角之正弦为二率,距交实行之正弦为三率,求得四率为正弦,检表得初纬。又以本天半径为一率,初纬之正弦为二率,次轮心距地心线为三率,求得四率为星距黄道线。乃以星距地心线为一率,星距黄道线为二率,本天半径为三率,求得四率为正弦。检表得本星视纬,随定其南北。距交实行初宫至五宫为黄道北,六宫至十一宫为黄道南。
求黄道宿度及纪日,同日躔。
求交宫时刻,同月离。
求三星晨夕伏见定限度,视本星黄道实行与太阳实行同宫同度为合伏。合伏后距太阳渐远,为晨见东方顺行。顺行渐迟,迟极而退为留退。初退行距太阳半周为退冲,退冲之次日为夕见。退行渐迟,迟极而顺为留顺。初顺行渐疾复近太阳,以至合伏,为夕不见。其伏见限度,土星十一度,木星十度,火星十一度半。合伏前后某日,太阳实行与本星实行相距近此限度,即以本星本日黄道实行,用弧三角形,以赤道地平交角为所知一角,夕,春分后用内角,秋分后用外角;晨反是。实行距春秋分度为对边,黄赤大距为所知又一角,求得不知之对边。乃用所知两边对所知两角,求得不知之又一角,夕,秋分后用内角,春分后用外角;晨反是。为限距地高。乃用弧三角形,有正角,有黄道地平交角,即限距地高。有本星伏见限度,为对交角之弧,求得对正角之弧,为距日黄道度。若星当黄道无距纬,即为定限度。又用弧三角形,有正角,有黄道地平交角,以本星距纬为对交角之弧,求得两角间之弧,为加减差。以加减距日黄道度,纬南加,纬北减。得伏见定限度。视本星距太阳度与定限度相近,如在合伏前某日,即为某日夕不见;在合伏后某日,即为某日晨见。
求三星合伏时刻,视太阳实行将及本星实行,为合伏本日;已过本星实行,为合伏次日。求时刻,于太阳一日之实行即本日次日两实行之较。内减本星一日之实行为一率,馀同月离求朔、望。
求三星退冲时刻,视本星黄道实行与太阳实行相距将半周,为退冲本日;已过半周,为退冲次日。求时刻之法,以太阳一日之实行与本星一日之实行相加为一率,馀同前。
求同度时刻,以两星一日之实行相加减两星同行则减。一顺一逆则加。为一率,刻下分为二率,两星相距为三率,求得四率为距子正之分数,以时刻收之即得。五星并同。
金星用数
每日平行三千五百四十八秒,小馀三三0五一六九。
最高日行十分秒之二又二七一0九五。
伏见每日平行二千二百十九秒,小馀四三一一八八六。
本轮半径二十三万一千九百六十二。
均轮半径八万八千八百五十二。
次轮半径七百二十二万四千八百五十。
次轮面与黄道交角三度二十九分。
金星平行应初宫初度二十分十九秒十八微。
最高应六宫一度三十三分三十一秒四微。
伏见应初宫十八度三十八分十三秒六微。
水星用数
每日平行与金星同。
最高日行十分秒之二又八八一一九三。
伏见每日平行一万一千一百八十四秒,小馀一一六五二四八。
本轮半径五十六万七千五百二十三。
均轮半径一十一万四千六百三十二。
次轮半径三百八十五万。
次轮心在大距,与黄道交角五度四十分。
次轮心在正交,与黄道交角北五度五分十秒,其交角较三十四分五十秒。与大距交角相较,后仿此。南六度三十一分二秒,其交角较五十一分二秒。
次轮心在中交,与黄道交角北六度十六分五十秒,其交角较三十六分五十秒。南四度五十五分三十二秒,其交角较四十四分二十八秒。
水星平行应与金星同。
最高应十一宫三度三分五十四秒五十四微。
伏见应十宫一度十三分十一秒十七微,馀见日躔。
推金、水星法
求天正冬至,同日躔。
求金、水本星平行,同土、木、火星。
求金、水最高行,同土、木、火星。
求金、水伏见平行,同本星平行。
求金、水正交行,置本星最高平行,金星减十六度,水星加减六宫,即得。
求金星初实行,用本星引数求初均数,以加减本星平行,为本星初实行。及求次轮心距地心线,并同土、木、火星。
求水星初实行,用平三角形,以本轮半径为一边,均轮半径为一边,以引数三倍之为所夹之外角,过半周者与全周相减,用其馀。求其对角之边,并对均轮半径之角。又用平三角形,以本天半径为大边,以对角之边为小边,以对均轮半径之角与均轮心距最卑度相加减,引数不及半周者,与半周相减;过半周者,减去半周,即均轮心距最卑度。加减之法,视三倍引数不过半周则加,过半周则减。为所夹之角,求得对小边之角为初均数,并求得对角之边为次轮心距地心线。以初均数加减水星平行,引数初宫至五宫为减,六宫至十一宫为加。得水星初实行。
求金、水伏见实行,置本星伏见平行,加减本星初均数,引数初宫至五宫为加,六宫至十一宫为减。即得。
求金、水黄道实行,用平三角形,以本星次轮心距地心线为一边,本星次轮半径为一边,本星伏见实行为所夹之外角,过半周者与全周相减,用其馀。求得对次轮半径之角为次均数,并求得对角之边为本星距地心线。以次均数加减初实行,伏见实行初宫至五宫为加,六宫至十一宫为减。得本星黄道实行。
求金、水距次交实行,置本星初实行,减本星正交行,为距交实行。与本星伏见实行相加,得本星距次交实行。
求金、水视纬,以本天半径为一率,本星次轮与黄道交角之正弦为二率,金星交角惟一,水星交角则时时不同,须求实交角用之,法详后。本星距次交实行之正弦为三率,求得四率为正弦,检表得本星次纬。又以本天半径为一率,本星次纬之正弦为二率,本星次轮半径为三率,求得四率为本星距黄道线。乃以本星距地心线为一率,本星距黄道线为二率,本天半径为三率,求得四率为正弦,检表得本星视纬,随定其南北。初宫至五宫为黄道北,六宫至十一宫为黄道南。
求水星实交角,以半径一千万为一率,交角较化秒为二率,距交实行九宫至二宫用正交交角较,三宫至八宫用中交交角较,仍视其南北用之。距交实行之正弦为三率,求得四率为交角差。置交角,用交角之法与用交角较同。以交角差加减之,距交实行九宫至二宫,星在黄道北则加,南则减;三宫至八宫反是。得实交角。
求黄道宿度及纪日,同日躔。
求交宫时刻,同月离。
求金、水晨夕伏见定限度,本星实行与太阳实行同宫同度为合伏,合伏后距太阳渐远;夕见西方顺行,顺行渐迟,迟极而退为留退。初退行渐近太阳,则夕不见,复与太阳同度为合退伏。自是又渐远太阳,晨见东方。仍退行渐迟,迟极而顺为留顺。初顺行渐疾,复近太阳,以至合伏,为晨不见。其伏见限度,金星为五度,水星为十度。其求定限度之法,与土、木、火星同,视本星距太阳度与定限相近。如在合伏前某日,即为某日晨不见;合伏后某日,即为某日夕见;合退伏前某日,即为某日夕不见;合退伏后某日,即为某日晨见。
求金、水合伏时刻,视本星实行将及太阳实行为合伏本日,已过太阳实行为合伏次日。求时刻之法,与月离求朔、望时刻之法同。
求金、水合退伏时刻,视太阳实行将及本星实行为合退伏本日,已过本星实行为合退伏次日。求时刻之法,与土、木、火星求退冲时刻之法同。
恆星用数
见日躔。
推恆星法求黄道经度,以距康熙壬子年数减一,得积年岁差,乘之。收为度分,与康熙壬子年恆星表经度相加,得各恆星本年经度。求赤道经纬度,用弧三角形,以星距黄极为一边,黄赤大距为一边,本年星距夏至前后为所夹之角,求得对星距黄极边之角。夏至前用本度,夏至后与周天相减用其馀度。自星纪宫初度起算,为各恆星赤道经度。又求得对原角之边,与象限相减,馀为赤道纬度。减象限为北,减去象限为南。
求中星,以刻下分为一率,本日太阳实行与次日太阳实行相减馀为二率,以所设时刻化分为三率,求得四率,与本日太阳实行相加,得本时太阳黄道经度。用弧三角形,推得太阳赤道经度,以所设时刻变赤道度一时变为十五度,一分变为十五分,一秒变为十五秒。加减半周,不及半周则加半周,过半周则减半周。得本时太阳距午后度。与太阳赤道经度相加,得本时正午赤道经度。视本年恆星赤道经度同者,即为中星。
p; 最高日行十分秒之二又一九五八0三。
正交日行十分秒之一又一四六七二八。
本轮半径八十六万五千五百八十七。
均轮半径二十九万六千四百一十三。
次轮半径一百零四万二千六百。
本道与黄道交角二度三十一分。
土星平行应七宫二十三度十九分四十四秒五十五微。
最高应十一宫二十八度二十六分六秒五微。
正交应六宫二十一度二十分五十七秒二十四微。
木星用数
每日平行二百九十九秒,小馀二八五二九六八。
最高日行十分秒之一又五八四三三。
正交日行百分秒之三又七二三五五七。
本轮半径七十万五千三百二十。
均轮半径二十四万七千九百八十。
次轮半径一百九十二万九千四百八十。
本道与黄道交角一度十九分四十秒。
木星平行应八宫九度十三分十三秒十一微。
最高应九宫九度五十一分五十九秒二十七微。
正交应六宫七度二十一分四十九秒三十五微。
火星用数
每日平行一千八百八十六秒,小馀六七00三五八。
最高日行十分秒之一又八三四三九九。
正交日行十分秒之一又四四九七二三。
本轮半径一百四十八万四千。
均轮半径三十七万一千。
最小次轮半径六百三十万二千七百五十。
本天高卑大差二十五万八千五百。
太阳高卑大差二十三万五千。
本道与黄道交角一度五十分。
火星平行应二宫十三度三十九分五十二秒十五微。
最高应八宫初度三十三分十一秒五十四微。
正交应四宫十七度五十一分五十四秒七微,馀见日躔。
推土、木、火星法
求天正冬至,同日躔。
求三星平行,以积日详月离。与本星每日平行相乘,满周天秒数去之,馀收为宫度分,为积日平行。以加本星平行应,得本星年根。上考则减。又置本星每日平行,以所求距天正冬至次日数乘之,得数与年根相并,得本星平行。
求三星最高行,以积日与本星最高日行相乘,得数以加本星最高应,得最高年根。上考则减。又置本星最高日行,以所求距天正冬至次日数乘之,得数与年根相并,得本星最高行。
求三星正交行,以积日与本星正交日行相乘,得数以加本星正交应,得正交年根。上考则减。又置本星正交日行,以所求距天正冬至次日数乘之,得数与年根相并,得本星正交行。
求三星初实行,置本星平行,减最高行,得引数。用平三角形,以均轮半径减本轮半径为对正角之边,以引数为一角,求得对引数角之边及对又一角之边。又用平三角形,以对引数角之边与均轮通弦相加求通弦法,详月离。为小边,以对又一角之边与本天半径相加减引数三宫至八宫相减,九宫至二宫相加。为大边,正角在两边之中,求得对小边之角为初均数。并求得对正角之边为次轮心距地心线,以初均数加减本星平行,引数初宫至五宫减,六宫至十一宫加。得本星初实行。
求三星本道实行,置本日太阳实行减本星初实行,得次引。即距日度。用平三角形,以次轮心距地心线为一边,次轮半径为一边,惟火星次轮半径时时不同,求法详后。次引为所夹之外角,过半周者与全周相减,用其馀。求得对次轮半径之角为次均数,并求得对次引角之边为星距地心线。乃以次均数加减初实行,加减与初均相反。得本星本道实行。求火星次轮实半径,以火星本轮全径命为二千万为一率,本天高卑大差为二率,均轮心距最卑之正矢为三率,引数与半周相减,即均轮心距最卑度。求得四率为本天高卑差。又以太阳本轮全径命为二千万为一率,太阳高卑大差为二率,本日太阳引数之正矢为三率,引数过半周者与全周相减,用其馀。求得四率为太阳高卑差。乃置火星最小次轮半径,以两高卑差加之,得火星次轮实半径。
求三星黄道实行,置本星初实行,减本星正交行,得距交实行。次轮心距正交。乃以本天半径为一率,本道与黄道交角之馀弦为二率,距交实行之正切为三率,求得四率为正切。检表得黄道度,与距交实行相减,得升度差,以加减本道实行,距交实行不过象限及过二象限为减,过象限及过三象限为加。得本星黄道实行。
求三星视纬,以本天半径为一率,本道与黄道交角之正弦为二率,距交实行之正弦为三率,求得四率为正弦,检表得初纬。又以本天半径为一率,初纬之正弦为二率,次轮心距地心线为三率,求得四率为星距黄道线。乃以星距地心线为一率,星距黄道线为二率,本天半径为三率,求得四率为正弦。检表得本星视纬,随定其南北。距交实行初宫至五宫为黄道北,六宫至十一宫为黄道南。
求黄道宿度及纪日,同日躔。
求交宫时刻,同月离。
求三星晨夕伏见定限度,视本星黄道实行与太阳实行同宫同度为合伏。合伏后距太阳渐远,为晨见东方顺行。顺行渐迟,迟极而退为留退。初退行距太阳半周为退冲,退冲之次日为夕见。退行渐迟,迟极而顺为留顺。初顺行渐疾复近太阳,以至合伏,为夕不见。其伏见限度,土星十一度,木星十度,火星十一度半。合伏前后某日,太阳实行与本星实行相距近此限度,即以本星本日黄道实行,用弧三角形,以赤道地平交角为所知一角,夕,春分后用内角,秋分后用外角;晨反是。实行距春秋分度为对边,黄赤大距为所知又一角,求得不知之对边。乃用所知两边对所知两角,求得不知之又一角,夕,秋分后用内角,春分后用外角;晨反是。为限距地高。乃用弧三角形,有正角,有黄道地平交角,即限距地高。有本星伏见限度,为对交角之弧,求得对正角之弧,为距日黄道度。若星当黄道无距纬,即为定限度。又用弧三角形,有正角,有黄道地平交角,以本星距纬为对交角之弧,求得两角间之弧,为加减差。以加减距日黄道度,纬南加,纬北减。得伏见定限度。视本星距太阳度与定限度相近,如在合伏前某日,即为某日夕不见;在合伏后某日,即为某日晨见。
求三星合伏时刻,视太阳实行将及本星实行,为合伏本日;已过本星实行,为合伏次日。求时刻,于太阳一日之实行即本日次日两实行之较。内减本星一日之实行为一率,馀同月离求朔、望。
求三星退冲时刻,视本星黄道实行与太阳实行相距将半周,为退冲本日;已过半周,为退冲次日。求时刻之法,以太阳一日之实行与本星一日之实行相加为一率,馀同前。
求同度时刻,以两星一日之实行相加减两星同行则减。一顺一逆则加。为一率,刻下分为二率,两星相距为三率,求得四率为距子正之分数,以时刻收之即得。五星并同。
金星用数
每日平行三千五百四十八秒,小馀三三0五一六九。
最高日行十分秒之二又二七一0九五。
伏见每日平行二千二百十九秒,小馀四三一一八八六。
本轮半径二十三万一千九百六十二。
均轮半径八万八千八百五十二。
次轮半径七百二十二万四千八百五十。
次轮面与黄道交角三度二十九分。
金星平行应初宫初度二十分十九秒十八微。
最高应六宫一度三十三分三十一秒四微。
伏见应初宫十八度三十八分十三秒六微。
水星用数
每日平行与金星同。
最高日行十分秒之二又八八一一九三。
伏见每日平行一万一千一百八十四秒,小馀一一六五二四八。
本轮半径五十六万七千五百二十三。
均轮半径一十一万四千六百三十二。
次轮半径三百八十五万。
次轮心在大距,与黄道交角五度四十分。
次轮心在正交,与黄道交角北五度五分十秒,其交角较三十四分五十秒。与大距交角相较,后仿此。南六度三十一分二秒,其交角较五十一分二秒。
次轮心在中交,与黄道交角北六度十六分五十秒,其交角较三十六分五十秒。南四度五十五分三十二秒,其交角较四十四分二十八秒。
水星平行应与金星同。
最高应十一宫三度三分五十四秒五十四微。
伏见应十宫一度十三分十一秒十七微,馀见日躔。
推金、水星法
求天正冬至,同日躔。
求金、水本星平行,同土、木、火星。
求金、水最高行,同土、木、火星。
求金、水伏见平行,同本星平行。
求金、水正交行,置本星最高平行,金星减十六度,水星加减六宫,即得。
求金星初实行,用本星引数求初均数,以加减本星平行,为本星初实行。及求次轮心距地心线,并同土、木、火星。
求水星初实行,用平三角形,以本轮半径为一边,均轮半径为一边,以引数三倍之为所夹之外角,过半周者与全周相减,用其馀。求其对角之边,并对均轮半径之角。又用平三角形,以本天半径为大边,以对角之边为小边,以对均轮半径之角与均轮心距最卑度相加减,引数不及半周者,与半周相减;过半周者,减去半周,即均轮心距最卑度。加减之法,视三倍引数不过半周则加,过半周则减。为所夹之角,求得对小边之角为初均数,并求得对角之边为次轮心距地心线。以初均数加减水星平行,引数初宫至五宫为减,六宫至十一宫为加。得水星初实行。
求金、水伏见实行,置本星伏见平行,加减本星初均数,引数初宫至五宫为加,六宫至十一宫为减。即得。
求金、水黄道实行,用平三角形,以本星次轮心距地心线为一边,本星次轮半径为一边,本星伏见实行为所夹之外角,过半周者与全周相减,用其馀。求得对次轮半径之角为次均数,并求得对角之边为本星距地心线。以次均数加减初实行,伏见实行初宫至五宫为加,六宫至十一宫为减。得本星黄道实行。
求金、水距次交实行,置本星初实行,减本星正交行,为距交实行。与本星伏见实行相加,得本星距次交实行。
求金、水视纬,以本天半径为一率,本星次轮与黄道交角之正弦为二率,金星交角惟一,水星交角则时时不同,须求实交角用之,法详后。本星距次交实行之正弦为三率,求得四率为正弦,检表得本星次纬。又以本天半径为一率,本星次纬之正弦为二率,本星次轮半径为三率,求得四率为本星距黄道线。乃以本星距地心线为一率,本星距黄道线为二率,本天半径为三率,求得四率为正弦,检表得本星视纬,随定其南北。初宫至五宫为黄道北,六宫至十一宫为黄道南。
求水星实交角,以半径一千万为一率,交角较化秒为二率,距交实行九宫至二宫用正交交角较,三宫至八宫用中交交角较,仍视其南北用之。距交实行之正弦为三率,求得四率为交角差。置交角,用交角之法与用交角较同。以交角差加减之,距交实行九宫至二宫,星在黄道北则加,南则减;三宫至八宫反是。得实交角。
求黄道宿度及纪日,同日躔。
求交宫时刻,同月离。
求金、水晨夕伏见定限度,本星实行与太阳实行同宫同度为合伏,合伏后距太阳渐远;夕见西方顺行,顺行渐迟,迟极而退为留退。初退行渐近太阳,则夕不见,复与太阳同度为合退伏。自是又渐远太阳,晨见东方。仍退行渐迟,迟极而顺为留顺。初顺行渐疾,复近太阳,以至合伏,为晨不见。其伏见限度,金星为五度,水星为十度。其求定限度之法,与土、木、火星同,视本星距太阳度与定限相近。如在合伏前某日,即为某日晨不见;合伏后某日,即为某日夕见;合退伏前某日,即为某日夕不见;合退伏后某日,即为某日晨见。
求金、水合伏时刻,视本星实行将及太阳实行为合伏本日,已过太阳实行为合伏次日。求时刻之法,与月离求朔、望时刻之法同。
求金、水合退伏时刻,视太阳实行将及本星实行为合退伏本日,已过本星实行为合退伏次日。求时刻之法,与土、木、火星求退冲时刻之法同。
恆星用数
见日躔。
推恆星法求黄道经度,以距康熙壬子年数减一,得积年岁差,乘之。收为度分,与康熙壬子年恆星表经度相加,得各恆星本年经度。求赤道经纬度,用弧三角形,以星距黄极为一边,黄赤大距为一边,本年星距夏至前后为所夹之角,求得对星距黄极边之角。夏至前用本度,夏至后与周天相减用其馀度。自星纪宫初度起算,为各恆星赤道经度。又求得对原角之边,与象限相减,馀为赤道纬度。减象限为北,减去象限为南。
求中星,以刻下分为一率,本日太阳实行与次日太阳实行相减馀为二率,以所设时刻化分为三率,求得四率,与本日太阳实行相加,得本时太阳黄道经度。用弧三角形,推得太阳赤道经度,以所设时刻变赤道度一时变为十五度,一分变为十五分,一秒变为十五秒。加减半周,不及半周则加半周,过半周则减半周。得本时太阳距午后度。与太阳赤道经度相加,得本时正午赤道经度。视本年恆星赤道经度同者,即为中星。